
Mashup in a Day
A lesson plan to teach mashup technology

By

Jane McGookey
April, 2009

Mashup in a Day
A lesson plan to teach mashup technology

By
Jane McGookey

A project submitted in partial fulfillment of the requirements for the degree of

Master of Science in

Computer Information Systems

at
Grand Valley State University

April, 2009

Your Professor Date

Abstract

Web 2.0 is the current buzz word for the organic way in which the Web is developing.
Jump start your teaching of the programmable Web with "Mashup in a Day", an all-
inclusive lesson plan on mashups. Your students will learn not only web terminology but
be able to program a Google Map mashup. "Mashup in a Day" clearly shows how Web
requests are processed by both the browser and the servers. Notes and slides highlight
sections of code that are key to programming a successful mashup. "Mashup in a Day"
includes lecture slides and notes, a project assignment, commented sample code and 20
questions (with answers!) for use on quizzes or tests. Come and see why mashup
technology is the key to the programmable Web.

Table of Contents

Project Background...1

Project Process ...1
Step 1: Develop a mashup ..1
Step 2: Develop a lesson plan ...1

Project Deliverables ..2
Lecture Slides and Notes ..2
Demo Screenshot..29
Class Project Description ..30
Sample Test Questions ...32

Project Evaluation ...34
Enhancements ..34
Conclusions...34

Appendix A ...35

Project Background

The purpose of this project, Mashup in a Day - A lesson plan for teaching
mashup technology, is two fold. First, I have a passion for teaching computer
technology and electronic communication to non-digital natives. This
demographic usually is hesitant to learn “yet another” technology so it is
necessary to be able to explain things with simple examples and non-technical
jargon. Secondly, I have a desire keep up with Web 2.0 developments. During a
GVSU masters presentation I learned about a Web technology called ‘mashup’.
Immediately I knew this technology was powerful and wanted to learn to develop
one myself.

Project Process

Initial research included reading a variety of mashup resourses, including books,
websites, and blogs. I recorded progress on my project on my blog at
whycompsci.wordpress.com. Meeting with my advisor, Dr Adams, twice a month,
always proved worthwhile. His knowledge was freely shared and his suggestions
have led a better project.

After the initial research was complete, it was possible to design and code a
working mashup. Having a working mashup was crucial in developing the lecture
materials for this project.

Step 1: Develop a mashup
As a staff member of the Presbytery of Lake Michigan I saw a need to visually
display the locations of our churches. The current online directory displays a text
based list of churches based on the selected city. This may or may not be useful
for someone looking for a church. This problem can be solved by mashing the
church locations with Google maps.

Step 2: Develop a lesson plan
To master a subject is to be able to teach it.

I documented of my progress on my blog, whycompsci.wordpress.com. These
experiences and the working mashup code were instrumental in creating the
lesson plan materials. The lesson plan consists of lecture slides and notes, class
project assignment and sample test questions. The lecture should take one
session of instruction.

McGookey Page 1 of 35 04/2009

Project Deliverables

Lecture Slides and Notes
The following pages are the lecture slides with instructor notes. The most up to
date course materials can be downloaded from whycompsci.wordpress.com

McGookey Page 2 of 35 04/2009

Mashup in a Day
A lesson plan to teach mashup technology

Computer Science Master’s Project

Developed by

Jane McGookey
Grand Valley State University

Lesson Preparation:

1. Make code available for students
2. Register for Google API key
3. Update code
4. Load code on web server for demonstrations
5. Verify code works on your server (GVSU servers do not allow php to

get_file_contents from http GET)

Introduce topic-
Mashup in a Day is a lesson plan to teach mashup technology in a single
session.

McGookey Page 3 of 35 04/2009

A Mashup is....
an application that runs on a web server

combining one or more data sources

and displaying the results in a meaningful way.

A mashup is

an application that runs on a web server

combining one or more data sources

and displaying the results in a meaningful way.

An example would be to display your favorite fishing holes. The list of
locations would be stored on your web server and Google server would be
used to generate map.

McGookey Page 4 of 35 04/2009

Source: www.rareplay.com/index.php?page=WebGlue

Web 1.0

Web 1.0 centers on the user. The user searches for data. The user
correlates the data.

For example, I am interested in researching specific breeds of dogs.

1. On my PC, I (the user) would have a spread sheet containing my list of
dogs

2. I would use the web to look up facts about different the breeds
3. I would search the web for photos for variations of the breed.

McGookey Page 5 of 35 04/2009

Source: www.rareplay.com/index.php?page=WebGlue

Web 2.0

With Web 2.0, the web server is central. It allows the user to view data from
multiple sources. A Mashup is the web programming needed to
collect data from various sources and makes them available dynamically!

In our dog breed example, the mashup on the web server does the work
by storing the list of breeds on the server, the server can be programmed
to gather the breed information and photos then present all the information
at once!

McGookey Page 6 of 35 04/2009

Model-View-Controller architecture

Browser/Web Server communications
HTML, CSS
JavaScript/AJAX
PHP/MySQL
[optional] JS framework

What you need to be familiar with

HTML
JS

PHP

The Model is information gathered from the data sources by php/msql.

The View is handled by HTML and CSS. This is what your browser uses to
generate the web page.

The Controller is the Javascript & AJAX that controls how and when the
data is transferred to the client.

Walk thru diagram

McGookey Page 7 of 35 04/2009

Terms to know

AJAX: Asynchronous JavaScript + XML
API: Application program interface
CSS: Cascading Style Sheets
DOM: Document Object Model
HTML: Hypertext Markup Language
HTTP: Hypertext Transfer Protocol
JSON: JavaScript Object Notation
UI: User interface
WEB 2.0: The programmable web
XML: Extensible Markup Language

Comprehension of terminology is important for all students to have a
successful learning experience !

Highlight :

AJAX - Asynchronous JavaScript & XML - requests data from server and
updates the web dynamically (the user does not have to refresh the
browser)

JSON - JavaScript Object Notation which is easily readable by humans and
elements are easily accessed programatically

Feel free to google these terms AFTER class

McGookey Page 8 of 35 04/2009

Steps to create a mashup
1. Decide purpose of mashup - what question to
answer or problem to solve?
2. Locate the data you need to support #1

Do you already control the data?
Is the data available on the Internet?

Is it downloadable (static)?
Is it available programatically?

3. Define user input view
4. Define results view

Remember a mashup is a web application that combines one or more data
sources and displays the data in more meaningful ways

1. It is very important to clearly define what the mashup will do.
2. Finding the data is the hardest part.

Tasks like screen scraping and data entry should be avoided.
Ideally the data can be found programmatically (API), this will keep
your mashup from becoming outdated.
Search engines can be useful in locating data that can be accessed
programatically (API, developer areas)

3. If data can't be found, re-assess the purpose of your mashup.
4. Define user views only when steps 1 & 2 are complete

McGookey Page 9 of 35 04/2009

Why? To validate requests and replies between Web
Server and Third-party servers

How?
1. Human requests key from third-party (e.g Google)
2. Human embeds key into code
3. Executed code sends key with

requests to third-party server
4. Request is executed if sending

server and key match.

API Key

API key provides some amount of assurance that the correct web server is
requesting data from the third-party server.

How?
1. Human requests key from third-party (e.g Google)
2. Human embeds key into code.
3. Executed code sends key with request to third-party server.
4. Request is executed if sending server and key match.

McGookey Page 10 of 35 04/2009

Techniques

Getting data from third party APIs may require
knowledge of web protocols (REST, XML-RPC, RSS).
Timing how long does it take to retrieve data from
server

Cache data on server (php/mysql)
Defining views for user input and display of data (html,
css, javascript, AJAX, flash)
If you are using maps in your mashup, you need to
understand geocoding.

Obtaining data from other sites programatically may require you to
understand certain service oriented architectures and protocols (REST,
RSS, XML-RPC)

Be aware of the time it may take data to be retrieve from third-party
servers. It may be wise to cache data instead of requesting the data each
time the mashup is executed. If Amazon is having a huge sale, it may be
slower returning data to your program. Some servers limit the number of
requests in a given period of time (minute, day, etc). This information
should be available in the API documentation.

Defining user friendly views will increase the likelihood your mashup will be
used multiple times. There are a variety of techniques to available to
develop user interfaces (UI). The simplest is HTML with JavaScript.

AJAX however can be used to request data from your web server and
update the display dynamically.

If you are using maps in your mashup , then you need to understand
geocoding.

McGookey Page 11 of 35 04/2009

Geocoding
The process of converting a street address (town, zip code,
etc) to a Latitude and Longitude.

1 Campus Dr, Allendale MI 49401
Lat = 42.9615303
Long = -85.8887345

Image source www.worldatlas.com

Free Geocoding Services

geocoder.us
webgis.usc.edu
Google Maps
Yahoo Maps

Geocoding is the process of converting a street address to its latitude and
longitude.

Example -
1 Campus Dr, Allendale MI 49401
Lat = 42.9615303
Long = -85.8887345
This slide lists some of the free geocoding resources on the web.

McGookey Page 12 of 35 04/2009

Code Examples
Class project
Quiz

McGookey Page 13 of 35 04/2009

Step 2: Data sources are:
List of churches provided in XML format from the
Presbytery of Lake Michigan (www.
lakemichiganpresbytery.org)
Google Maps & Google Geocoding

Step 3: User input view - simple form for zip code entry

Step 4: Results view - refocus and
zoom map based on entered zip code

Run the mashup dev.lakemichiganpresbytery.org/map/

Step 1: Identify the problem: The current system
displays text based list of churches by city. The solution
is to plot locations on an interactive map showing.

Make code available for students. Run the demo by clicking on the link in
the slide.

Step 1: The current online directory displays a text based on list of
churches based the selected city. This may or may not be useful for
someone looking for a church. This problem can be solved by mashing the
church locations with Google maps.

Step 2: Data sources are
1. List of churches provided in XML format from the organization.
2. Google Maps & Google Geocoding

Step 3: User input view - simple form for zip code entry

Step 4: Results view - refocus the map to center on zip code and increase
magnification.

McGookey Page 14 of 35 04/2009

http://dev.lakemichiganpresbytery.org/map/

HTML
user input view

<body onload="startUp();" >
<div class="banner" id="banner">

<h1>Organization Search</h1>
<form name="zipForm" id="zipForm" method="
get" onsubmit="OnSubmitForm(); return false;">
 <h3>Zip Code:</h3>
 <input name="zipcode" type="text" id="zipcode" size="5"/>
 <input type="submit" name="Submit" value="Look Up" />
</form>
</div>
<div id="map" style="width: 780px; height: 400px"></div>
</body>

Check presentation time before continuing, adjust as needed

Client side - HTML for user input view

Notice how simple the HTML code is.
1. Set up the form

2. Create an area where the map will be display, this must be defined as a
<div> tag with an id called 'map' (Google updates this div element)

3. After the HTML loads, the browser runs the startUp Javascript function.
This function requests the information to be displayed on the map (i.e. each
church)

4. When the user enters a zip code the OnSubmitForm Javascript function
is invoked to recenter and increase magnification on the map.

McGookey Page 15 of 35 04/2009

Mashup Timing and Interactions (1/2)

Code samples in this presentation will use the same colors as this diagram.
It will help to reinforce request and response concepts..
Client - yellow
My web server - blue
Google - green

1. Start up - when the URL is typed into the browser an HTTP GET the
server to send the web page to the Client.

2. Browser executes the code and displays the zip code form
3. Client requests Google to create the map. Google does this by

updating the HTML div element
4. Client uses AJAX to request directory information from web server
5. Web server reads directory information from its local XML file. If

position of church is not found in cache then a geocode request is sent
to Google.

6. When the last church has been processed, the web server sends
display information (name, lat, lng, address, website, etc) to the client
as JSON array.

McGookey Page 16 of 35 04/2009

Mashup Timing and Interactions (2/2)

Note: After JSON array is received the client only talks with the Google
server

1. The JavaScript in browser decodes the JSON array and requests
Google to create the map markers

2. The browser then waits for user to enter a zip code.
3. When user enters a zip code, the browser requests Google to geocode

the zip code and then requests Google to recenter the map and to
increase the magnification

McGookey Page 17 of 35 04/2009

function startUp()
{
document.zipForm.zipcode.focus();
createMap();
var url = 'http://.../directory.php';
var myAjax = new Ajax.Request(url, {
 method: 'get', parameters: '',
 onSuccess: function(transport,response) {
 jtext = transport.responseText.evalJSON();
 parseInfo(jtext);
 }
});
}

Javascript
controls list of churches

function startUp()
{
document.zipForm.zipcode.focus();
createMap();
var url = 'http://.../directory.php';
var myAjax = new Ajax.Request(url, {
 method: 'get', parameters: '',
 onSuccess: function(transport,response) {
 jtext = transport.responseText.evalJSON();
 parseInfo(jtext);
 }
});
}

{"id":["1","2"],
"name":["First Presbyterian Church","First Presbyterian
Church"],
"addr":["305 East Porter","200 Cutler Street"],
"town":["Albion","Allegan"],
"zip":["49224","49010"],
"web":["www.firstpresalbion.org",null],
"state":["MI","MI"],
"lat":["42.243767","42.529633"],
"lng":["-84.748825","-85.850807"]}

JSON generated from directory.php

The browser invokes a JavaScript function called startUp that controls the
loading and viewing of the church locations.

1. Request to Google to create a map

2. Create AJAX request which consists of:

a. The URL parameter is the location of the PHP portion of the mashup
code on the web server

b. The OnSuccess status initiates a callback function that invokes a
JavaScript function called parseInfo which is responsible for creating the
map markers

c. The evalJSON method in the callback function is part of the Javascript
framework called Prototype. Using a framework hides the details of the
AJAX request simplifying the programming. Download the
necessary include file from www.prototypejs.org

Click on directory.php link in slide to demonstrate how to use the browser
to test the PHP data service
McGookey Page 18 of 35 04/2009

http://dev.lakemichiganpresbytery.org/map/directory.php

Javascript
controls Google Marker placement

function setMarkerAndText
 (mapPoint, text)
{
 var marker = new GMarker (mapPoint);
 map.addOverlay(marker);
 GEvent.addListener (marker,
 "click",
 function () {
 marker.openInfoWindowHtml (text);
 } //function
); // addListener
}

After the JSON array is received the Javascript function setMarkerAndText
is invoked. This code segment shows how easy it is to create Google
marker.

Demo - click on a marker to display Information Box

To add a marker to the map :

1. Request Google to create a new marker.

2. Ask Google to add the marker to the map overlay

3. Set a Google Event to listen for a mouse click on the marker and define
the data to be displayed in the information window

McGookey Page 19 of 35 04/2009

Coding a geocoding request
To retrieve the location of an address, you simply make a
standard HTTP GET request.

Example: Geocode the address

 1 Campus Dr
 Allendale MI 49401

http://maps.google.com/maps/geo?
q=1+Campus+Allendale+MI+49401&output=csv
&key={apikey}.

 200,8,42.9615303,-85.8887345

Server side (blue)

It is useful to echo to the screen your geocde request to verify you are
getting the results expected.

Click on the link in the slide to show how the browser can be used to verify
the HTTP GET request.

XML -
http://maps.google.com.....&output=xml

Notice if you change the output parameter, the information is returned in
the desired format

CSV -
http://maps.google.com....&output=csv

JSON (default)
http://maps.google.com...&output=JSON

McGookey Page 20 of 35 04/2009

http://maps.google.com/maps/geo?q=1+Campus+Allendale+MI+49401&output=csv
http://maps.google.com/maps/geo?q=1+Campus+Allendale+MI+49401&output=csv
http://maps.google.com/maps/geo?q=1+Campus+Allendale+MI+49401&output=csv

Code Examples

Class project
Quiz

McGookey Page 21 of 35 04/2009

Class Project
Create a mashup using two or more well-known Web
resources. Some examples might are

Identify and show photos of your favorite places
(Google Maps, Flickr & your own data)
Compare mapping applications (Google, Yahoo, etc)
Map items for sale on Craigs list, eBay, Amazon, etc
Average income per zip code (US Census data)
Search for descriptions of the current New York Times
Best Seller list (Amazon, News feed)

Check out these websites for more ideas:
www.programmableweb.com
www.webmashup.com

Distribute Class Project Description Handout
This project will provide students with an experience in designing a
mashup, searching for the necessary data and them implementing
the mashup.

Examples are:

Identify and show photos of your favorite places, vacation spots, fishing
holes, etc (Google Maps, Flickr & your own data)
Compare mapping applications (Google, Yahoo, etc)
Map items for sale on Craigs list, eBay, Amazon, etc
Average income per zip code (US Census data)
Search for descriptions of the current New York Times Best Seller list

Resources:
www.programmableweb.com
www.webmashup.com

McGookey Page 22 of 35 04/2009

Class Presentations
Two presentations are will be required.

Presentation #1 shall include:

Purpose of mashup
APIs used
Anticipated Service Oriented Architecture/Protocols (REST,
SOAP, RPC)
Anticipated Data formats to be used (XML, JSON, etc)

Presentation #2 shall include:

Demonstration
Code extracts highlighting data procurement
Lessons learned

Presentation #1 shall include:
Purpose of mashup
APIs used
Anticipated Service Oriented Architecture/Protocols (REST, SOAP,
RPC)
Anticipated Data formats to be used (XML, JSON, etc)

Presentation # 2 shall include:
Demonstrate working mashup
Describe Service Oriented Architecture/Protocols used
Describe data formats used
Describe and show code samples
Evaluation of design process
Describe any lessons learned

McGookey Page 23 of 35 04/2009

Code Examples
Class project

Quiz

McGookey Page 24 of 35 04/2009

Sample quiz questions...

What is the first step in
designing a mashup?

The first step in creating a mashup is to define the question to answer or
problem to solved

McGookey Page 25 of 35 04/2009

Sample quiz questions...

What is the process called to
convert an address to it's
Latitude and Longitude?

Geocoding - converts an address to a latitude/longitude position

McGookey Page 26 of 35 04/2009

Sample quiz questions...

What does JSON stand for?

JS - Javascript
O - Object
N - Notation

JSON (JavaScript Object Notation) is a lightweight data-interchange
format. It is easy for humans to read and write. It is easy for machines to
parse and generate.

McGookey Page 27 of 35 04/2009

Sample quiz questions...

Why is an API key necessary
when using third-party data?

Validates requests and replies between the web server and the third-party
servers.

McGookey Page 28 of 35 04/2009

Demo Screenshot

Screen shot of the Presbytery of Lake Michigan church directory mashup. Code
can be found in Appendix A.

McGookey Page 29 of 35 04/2009

Class Project Description
Purpose:
A mashup is a Web service that takes one or more data sources and correlates
and/or displays the data in a more meaningful way. This lab will provide students
with experience in designing, finding data sources and coding a mashup. Two
presentations are required. The first presentation describes the "what and how"
of the mashup. The second presentation requires the demonstration and review
of a working mashup.

Task:
Working in a group or as an individual (depending on class size), create a
mashup using two or more well-known APIs. Feel free to use sample code as a
starting point.

Schedule:
 Presentation #1 - 1 week
 Presentation #2 - 2 weeks

The following websites may be useful in providing ideas and or resources for
your project

www.programmableweb.com
www.webmashup.com

Preparation for presentation #1:

1. Determine the question you want to answer or problem you want to
solve.
Some examples are:

• Identify and show photos of your favorite places, vacation spots,
fishing holes, etc (Google Maps, Flickr & your own data)

• Compare mapping applications (Google, Yahoo, etc)
• Map items for sale on Craigs list, eBay, Amazon, etc
• Average income per zip code (US Census data)
• Retrieve description for book, CD, DVD by numbering standards

(e.g. ISBN) etc for personal library (Amazon)

2. Find your data sources

Dynamic - register for API keys before proceeding to step 3.
• Search for APIs
• Search RSS feeds

Static Data
• Search for downloadable data
• Screenscrape
• Data entry

McGookey Page 30 of 35 04/2009

If mysql is needed, contact System Administrator to gain access to
database

3. Define the user interface. (Make sure you applied for API keys prior to starting
this step - it may take several days before you receive your key)

• User input view
• Result view

Presentation #1 shall include:

• Purpose of mashup
• APIs used
• Anticipated Service Oriented Architecture/Protocols (REST, SOAP, RPC)
• Anticipated Data formats to be used (XML, JSON, etc)

Preparation for Presentation #2

1. Implement the mashup

Presentation # 2 shall include:

• Demonstration of mashup
• Describe Service Oriented Architecture/Protocols used
• Data formats used
• Describe and show sample code of data services used
• Evaluation of design process, describe any changes that may have

occurred between the design and implementation

McGookey Page 31 of 35 04/2009

Sample Test Questions

1. What does the term "Web 2.0" mean? (Web 2.0 is a collaborative web which
allows sharing of data securely where the web server does the work and not the
user. It is more dynamic than Web 1.0)

2. What does a mashup do? (takes data from one or more data sources and
presents them in new or different ways)

3. In Web 1.0 who correlated data from different sources? (the user)

4. Name three ways to provide data to the mashup. (APIs, RSS feeds, download
static data, screen scrape, hand enter)

5. What does AJAX stand for? (Asynchronous JavaScript + XML requests data
from web server and can update view without the user pressing refresh on the
browser)

6. What does XML stand for? (Extensible Markup Language, data storage format)

7. Why use a Javascript framework? (makes writing web apps easier because it
hides the details from the programmer - e.g. AJAX states)

8. Why use an API key? (The key provides validation of requests and replies
between the web server and the third-party server.)

9. What is geocoding? (Determining the latitude and longitude of a position)

10. Determining the latitude and longitude in a mapping mashup is called?
(geocoding)

11. What does JSON stand for? (JavaScript Object Notation)

12. What is the advantage of transmitting data in JSON format? (JSON is human
readable and easily programmable. Using a javascript framework makes it easier
to manipulate data using AJAX)

13. Why would a programmer use php/mysql in a mashup? (to cache data from
other sources or to retrieve data already stored on the server)

14. Name three well known third party application/data providers (Google,
Amazon, Flkr, ...)

15. Explain a mashup in terms of the Model-View-Controller architecture. (The
Model is information gathered from the data sources by php/msql. The View is
handled by HTML and CSS. This is what generates the web page. The Controller
is the Javascript & AJAX that controls how and when the data is transferred to
the browser.)

McGookey Page 32 of 35 04/2009

16. What is the first step in designing a mashup (Determine the question you
want to answer)

17. What is the hardest step to create a mashup (Finding the data)

18. What is the minimum number of web servers required for a mashup? (one -
the web server running your php code)

19. How can a browser help debug the mashup? (type the http command into the
browser to verify the GET returns the expected data)

20. In your opinion what is the future of mashup technology?

McGookey Page 33 of 35 04/2009

Project Evaluation
Mashup in a Day - A lesson plan for teaching mashup technology, was
developed as a one session lecture. Many enhancements would be needed to
make the lesson plan more robust to represent the diversity of mashup
techniques currently available.

Enhancements

RSS – the Web has exploded with data that is available through RSS feeds. The
lesson plans should be augmented to demonstrate and dissect an RSS mashup

Screen scraping – there will always be websites that will not expose their data in
programmatic ways. This technique should be discussed. Students could be
encouraged to find automated solutions to this problem.

Mashup Editors – Google and others now offer “mashup editors”. As more APIs
are developed it should be easier to create more complex mashups using these
tools.

Conclusions
While the concept for mashup technology is relatively simple, I underestimated
the complicated ways in which third-party data can be obtained. This is the
reason the Class Project Assignment has two parts. The first part will allow
students to teach each other about a variety of service oriented architectures.
The second part will show students how a coding experience may change ones
original assumption on how a specific protocol works.

Due to the exponential rate by which web technology is developing it is likely
mashup programming as developed for this project will be absorbed into the
broader topic of web programming. Mashup editors will become more prevalent
and will likely be freely available. A drag and drop mashup editor would not be
unrealistic.

McGookey Page 34 of 35 04/2009

Appendix A

Appendix A consists of installation instructions. As well as the code used in the
church directory mashup. File included are:

• index.html
• mapfunctions.js
• directory.php

Installation instructions from readme.txt

To install the sample code on your web server you must :

1. have a web server that supports php, mysql - php MUST support call to
file_get_contents (Note: GVSU web servers do not allow students to do
this)

2. extract the code directory in the mashup_in_a_day.zip file (located on CD
or at http://whycompsci.wordpress.com)

3. apply for and update code (directory.php and index.html) with your web
server Google map API key
(http://code.google.com/apis/maps/signup.html)

4. configure directory.php with your mysql information
5. have in your mysql database create a table called Mash_Locations with

text fields for zip and name and float fields for latitude and longitude.
 CREATE TABLE Mash_Locations (zip text, name text,
 latitude float, longitude float);

6. update the URL in startUp in index.html
7. copy all code and sample data to the web server

McGookey Page 35 of 35 04/2009

 1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-trans
 itional.dtd">
 2 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 3 <!--
 4 index.html
 5 Author: Jane McGookey
 6 Date: April, 2009
 7 Create the input view for the zipcode lookup mashup
 8 -->
 9 <head>
 10 <!-- Set the title of the web page -->
 11 <title>Directory Mashup</title>
 12 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
 13
 14 <!-- Update the look of your form using the css file -->
 15 <LINK REL=StyleSheet HREF="style.css" TYPE="text/css">
 16 <!-- Update the following with your google key -->
 17 <script src="http://maps.google.com/maps?file=api&v=2&key=URGOOGLE_MAP_API_KEY"
 18 type="text/javascript"></script>
 19
 20 <!-- Include mapfunctions.js to create map, center map and add markers -->
 21 <script src="mapfunctions.js"> </script>
 22
 23 <!-- Include Javascript framework to make ajax call easier and to use evalJSON on responseText -->
 24 <script src="prototype-1.6.0.3.js"> </script>
 25
 26
 27
 28 <script language="javascript">
 29
 30 // when a zipcode is submitted, refocus the map to that zip and zoom in
 31
 32 function OnSubmitForm()
 33 {
 34 if (document.zipForm.zipcode.value.length != '5') {
 35 alert('Invalid zipcode');
 36 }
 37 else {
 38 centerMap(document.zipForm.zipcode.value);
 39 }
 40 }
 41
 42 // set cursor in form box, generate ajax request to retrieve JSON format of location data
 43
 44 function startUp()
 45 {
 46 document.zipForm.zipcode.focus(); //put cursor in form field
 47 createMap();
 48 // update this url with the location of your directory.php file
 49 var url = 'http://www.URurl.com/directory.php';
 50 // uncomment the following line and copy then paste the address into your browser to verify you have
 the correct URL
 51 // alert (url);
 52 var jtext;
 53 var myAjax = new Ajax.Request(
 54 url,
 55 {
 56 method: 'get',
 57 parameters: '',
 58 onSuccess: function(transport,response) {
 59 jtext = transport.responseText.evalJSON();
 60 parseInfo(jtext);
 61 }
 62 });
 63 }
 64
 65 // parseInfo - parses the JSON fields into information needed for the google marker
 66
 67 function parseInfo(organization)
 68 {
 69 for (var i = 0; i < organization.name.length; i++) {
 70 generateMarker(organization.lat[i],organization.lng[i],
 71 generateMarkerHTML(organization.name[i],organization.addr[i],organization.town[i],or
 ganization.state[i],organization.zip[i],organization.web[i]));
 72
 73 }
 74 }
 75
 76 // generateMarkerHTML - generates the HTML used when displaying the information box of the marker
 77
 78 function generateMarkerHTML (name,addr,town,state,zip,web) {

C:\Documents and Settings\Owner\Desktop\masters project\mashup_in_a_day\mashup_in_a_day\code\index.html: 1/2

 79 if (web != null) {
 80 txt = "<div class=marker> " +
 81 name + "
" +
 82 addr + "
" +
 83 town + " " + state + " " + zip +
 84 "</div>";
 85 }
 86 else {
 87 txt = "<div class=marker>" +
 88 name + "
" +
 89 addr + "
" +
 90 town + " " + state + " " + zip +
 91 "</div>";
 92 }
 93
 94 return txt;
 95 }
 96
 97
 98
 99 </script>
100
101
102 </head>
103
104 <body onload="startUp();" >
105 <div class="banner" id="banner">
106

107 <h1>Organization Search</h1>
108 <form name="zipForm" id="zipForm" method="get" onsubmit="OnSubmitForm(); return false;">
109 <h3>Zip Code:
110 <input name="zipcode" type="text" id="zipcode" size="5"/>
111 <input type="submit" name="Submit" value="Look Up" />
112 </h3>
113 </form>
114 </div>
115
116 <!-- You must have a div called map for google maps to work! -->
117 <div id="map" style="width: 780px; height: 400px"></div>
118
119 </body>
120 </html>

C:\Documents and Settings\Owner\Desktop\masters project\mashup_in_a_day\mashup_in_a_day\code\index.html: 2/2

 1 //
 2 // mapfunctions.js
 3 // Author: Jane McGookey
 4 // Date: April, 2009
 5 //
 6 // Google Mapping functions for directory mashup
 7
 8 var map = null;
 9 var geocoder = null;
10 var debug = false;
11
12 // createMap - creates the map, adds zoom controls and centers it North of Lansing MI
13
14 function createMap () {
15 if (GBrowserIsCompatible()) {
16 map = new GMap2(document.getElementById("map"));
17 map.addControl (new GSmallMapControl());
18 map.setCenter(new GLatLng(43, -85.5), 7); //North of Lansing MI
19 // Create the geocoder
20 geocoder = new GClientGeocoder();
21 }
22 }
23
24
25 // centerMap - geocodes the given address, then centers the map
26
27 function centerMap (addr) {
28 if (GBrowserIsCompatible()) {
29 if (addr != undefined) {
30 if (geocoder) {
31 geocoder.getLatLng(addr,
32 function(cpoint) { //point is a GLatLng point
33 if (!cpoint) {
34 if (debug) alert ("centerMap Address Not Found");
35 } else {
36 map.setCenter(cpoint, 10);
37 } // point returned
38 } //function
39) //getLatLng - callbck will center map
40 } else {
41 alert ("CenterMap Address undefined= "+addr);
42 } // geocoder
43 } // addr != undefined
44 } //Browser Compatible
45 }
46
47
48 // generateMarker - converts Lat/Lng into a google map point
49
50 function generateMarker (lat, lon, addressText) {
51 if (addressText != undefined) {
52 if (geocoder) {
53 point = new GLatLng(lat, lon);
54 if (!point) {
55 alert ("showAddress Address not found in call to getLatLng, "+address);
56 } else {
57 setMarkerAndText (point, addressText);
58 } // point returned
59 };// if geocoder
60 }
61 } //generateMarker
62
63
64
65 // setMarkerAndText - takes a google map point and information text and creates a google marker,
66 // add event listener for click (so information will be displayed)
67
68
69 function setMarkerAndText (mapPoint, text) {
70 var marker = new GMarker (mapPoint);
71 map.addOverlay(marker);
72 GEvent.addListener (marker,
73 "click",
74 function () {
75 marker.openInfoWindowHtml (text);
76 } //function
77); // addListener
78 }

C:\Documents and Settings\Owner\Desktop\masters project\mashup_in_a_day\mashup_in_a_day\code\mapfunctions.js: 1/1

 1 <?php
 2 /*
 3 directory.php
 4 Author: Jane McGookey
 5 Date: April,2009
 6
 7 Data service to provide information about locations.
 8 Inputs:
 9 XML file of locations
 10 mySql cached Lat/Lng
 11 Output:
 12 JSON format of data
 13 */
 14 header('content-type:text/javascript');
 15
 16 // update mysql database with your information
 17
 18 $DB_Table = 'Mash_Locations';
 19 $DB_User = 'URusername';
 20 $DB_Password = 'URpassword';
 21 $DB_Host = 'localhost';
 22 $DB_Name = 'URdatabaseName';
 23
 24 // Structure of information needed for the location plotted on the map
 25 class aLocation
 26 {
 27 var $id;
 28 var $name;
 29 var $addr;
 30 var $town;
 31 var $state;
 32 var $zip;
 33 var $web;
 34 var $lat;
 35 var $lng;
 36 }
 37 // object containing all locations
 38 class locations
 39 {
 40 var $aLocation;
 41 }
 42 $directory = new locations;
 43
 44 /*
 45 readdirectoryInfo - extracts data from the XML file, checks cache for Lat/Lng if not found, query google
 for Lat/Lng
 46 */
 47 function readdirectoryInfo () {
 48 $locResult = array();
 49 $directoryData = new locations;
 50 $doc = new DOMDocument();
 51 $doc->load('directory.xml');
 52
 53 $oneOrg = $doc->getElementsByTagName("Results");
 54 $index = 0;
 55
 56 foreach($oneOrg as $eachdirectory)
 57 {
 58 $ids = $eachdirectory->getElementsByTagName("ID");
 59 $directoryData->id[$index] = $ids->item(0)->nodeValue;
 60
 61 $iname = $eachdirectory->getElementsByTagName("ChurchName");
 62 $directoryData->name[$index] = $iname->item(0)->nodeValue;
 63
 64 $iaddr = $eachdirectory->getElementsByTagName("ChurchAddress");
 65 $directoryData->addr[$index] = $iaddr->item(0)->nodeValue;
 66
 67 $itown = $eachdirectory->getElementsByTagName("Town");
 68 $directoryData->town[$index] = $itown->item(0)->nodeValue;
 69
 70 $izip = $eachdirectory->getElementsByTagName("Zip");
 71 $directoryData->zip[$index] = $izip->item(0)->nodeValue;
 72
 73 $iweb = $eachdirectory->getElementsByTagName("ChurchWeb");
 74 $directoryData->web[$index] = $iweb->item(0)->nodeValue;
 75
 76 $directoryData->state[$index] = "MI";
 77
 78 $locResult = lookupPosition ($directoryData->name[$index],$directoryData->zip[$index]);
 79
 80 if ($locResult[0] == null) { //only check 1/2 of position either both valid or invalid

C:\Documents and Settings\Owner\Desktop\masters project\deliverables\mashup_in_a_day\code\directory.php: 1/3

 81 // Look up lat/lon with google
 82 $locResult = genLatLon(
 83 $directoryData->addr[$index],
 84 $directoryData->town[$index],
 85 $directoryData->state[$index],
 86 $directoryData->zip[$index]);
 87 }
 88
 89 $directoryData->lat[$index] = $locResult[0];
 90 $directoryData->lng[$index] = $locResult[1];
 91
 92 $index++;
 93
 94 }
 95 return $directoryData;
 96 }
 97
 98 /*
 99 genLatLon - create http request to google for lat/lng of given address
100 */
101 function genLatLon($addr,$town,$state,$zip)
102 {
103 $glatlng = array();
104
105 define("MAPS_HOST", "maps.google.com");
106 // update with your google key
107 define("KEY", "URGOOGLE_MAP_API_KEY");
108 $delay = 0;
109 $base_url_s = "http://" . MAPS_HOST . "/maps/geo?";
110 $base_url_e = "&output=csv&sensor=false&key=" . KEY;
111
112 $geocode_pending = true;
113
114 while ($geocode_pending) {
115 $street = str_replace (" ", "+",$addr);
116 $city = str_replace (" ", "+",$town);
117 $zcode = str_replace (" ", "+", $zip);
118
119 $gmapAddr[$i] =$address = $street .",+".$city .",+".$state.",+".$zcode;
120
121 $request_url = $base_url_s . "q=" . $address . $base_url_e;
122 // uncomment the following line to debug http request to google (copy the request and paste into brow
 ser)
123 // echo $request_url."
";
124
125 $csv = file_get_contents ($request_url);
126 // uncomment the following line to determine if your web server supports the file_get_contents functi
 on
127 // echo $csv
128 $csvSplit = split(",", $csv);
129 $status = $csvSplit[0];
130 if (strcmp($status, "200") == 0) {
131 // successful geocode
132 $geocode_pending = false;
133 $glatlng[0] = $csvSplit[2];
134 $glatlng[1] = $csvSplit[3];
135 cachePosition($name,$zip,$glatlng[0],$glatlng[1]);
136 } else if (strcmp($status, "620") == 0) {
137 // sent geocodes too fast
138 $delay += 100000;
139 } else {
140 // failure to geocode
141 $geocode_pending = false;
142 $glatlng[0] = null;
143 $glatlng[1] = null;
144 echo "Failed Address request=" . $request_url . "
";
145 echo "Received status =|" . $status . "|
\n";
146 }
147 usleep($delay);
148 }
149
150 return $glatlng;
151 }
152 /*
153 lookupPosition - check mysql database for cached Lat/Lng
154 */
155 function lookupPosition ($name,$zip) {
156 global $DB_Table;
157 $myPos = array();
158
159 $query = "SELECT latitude, longitude";

C:\Documents and Settings\Owner\Desktop\masters project\deliverables\mashup_in_a_day\code\directory.php: 2/3

160 $query .= " FROM ". $DB_Table;
161 $query .= " WHERE zip = '".$zip."' AND name = '".$name."';";
162
163 // echo "Database query = ".$query."
";
164 $result = mysql_query ($query);
165 // Get the data.
166 $valid = false;
167 $myPos[0] = null;
168 $myPos[1] = null;
169 if ($result) {
170 if ($row = mysql_fetch_array ($result)) {
171 $myPos[0] = $row [0];
172 $myPos[1] = $row [1];
173 $valid = true;
174 }
175 }
176
177 return $myPos;
178 }
179 /*
180 cachePosition - store the lat/Lng in the cache with the Name and Zip combo being unique
181 */
182 function cachePosition ($name,$zip,$lat,$lng) {
183 global $DB_Table;
184
185 $iquery = "INSERT INTO ". $DB_Table;
186 $iquery .= " (name, zip, latitude, longitude) VALUES ";
187 $iquery .= "('".$name."','".$zip."',".$lat.",".$lng.");";
188 // echo "Database query = ".$iquery."
";
189
190 $iresult = mysql_query ($iquery);
191 if (!$iresult) {
192 echo ("DB Insert fail result =".$iresult."
");
193 }
194 }
195
196 /*
197 Main program
198 */
199
200
201 // open database (cached positions) connections
202 $con = mysql_connect ($DB_Host, $DB_User, $DB_Password);
203 if (!$con) {
204 die ('Could not connect to MYSQL:'.mysql_error());
205 }
206 $sel = mysql_select_db($DB_Name, $con);
207 if (!$sel) {
208 die ('Could not select the database:'.mysql_error());
209 }
210
211 // read locations information
212 $directory = new locations;
213 echo ('alert("locations read")');;
214 $directory = readdirectoryInfo();
215
216 // close database connection
217 mysql_close($con);
218
219 // output location information in json format
220 echo json_encode($directory);
221
222
223 ?>
224

C:\Documents and Settings\Owner\Desktop\masters project\deliverables\mashup_in_a_day\code\directory.php: 3/3

